

KI – Wie eine Maschine Straßenzustände erkennt

Christian Kuhlmann, 22.05.24

Westfälische Hochschule

- Ca. 8.000 Studierende
- Fachbereiche
 - Maschinenbau, Umwelt- und Gebäudetechnik
 - Elektrotechnik und angew. Naturwissenschaften
 - Informatik und Kommunikation
 - Wirtschaft
 - Wirtschaft und Informationstechnik
 - Maschinenbau
 - Wirtschaftsrecht
 - Ingenieur- und Naturwissenschaften

Standorte

- Gelsenkirchen
- Recklinghausen
- Bocholt

Die Forschungsgruppe

geospaitial lab

Forschungsgruppe Künstliche Intelligenz und kommunale Geoinformationen

Gründung: 2018

Mitglieder: Alexander Roß, Marius Maryniak, Christian Kuhlmann

Kompetenzen

	Datenstrukturen, Algorithmen, Tools	Ressourcen, Services	Prozesse	Anforderung en
KI/ML	CNN, U-Net, tensorflow, pytorch, sklearn, numpy, pandas	GPU, Cloud Services, Model-Platforms, Data- Sharing	ML-Processing	
Geoinformatik	Bezugssysteme, QGIS, Geopandas, .shp(x), .gml, Pylaz, .las(z), GIS-Modelle, Georeferenzierung, GNSS, 3D-GIS, Fernerkundung	Geodatenifrastrukturen, GeoBasis NRW, WMS, Copernicus, Mobile Mapping Services	ETL-Prozesse in der Geoinformations- verarbeitung	
Computer Vision	Filter, Segmentation, Transformation, Edge- Detection, Projektionen, LiDAR, .jpeg, .png, Open CV	Pre-Traines Computer Vision Models, Vision Benchmarks	Bildbearbeitungs- prozesse (Pre- Procesing ML)	
Kommunen	Proprietäre Daten zur lokalen Verarbeitung von Informationen	ALKiS, Liegenschaftskataster,	Erhaltungs- management, E-EMI, AP9	Fachliche, technische und rechtliche Anforderungen

Bisherige Projektaktivitäten

- GeoSmartChange
 (Förderprojekt des Landes NRW, 2018-22, zusammen mit dem Kreis RE, Stadt GE und BOT)
- ADOIS: Versiegelungsflächen (Forschungsprojekt im Auftrag des Kreises RE, 2022)
- abs(): Straßenzustand (Forschungsprojekt im Auftrag der Städte RE, GE, BOT, Bocholt, Marl, Herten, Dorsten, Haltern am See und dem Kreis RE, 2022-23)
- EasyDigiTwin
 (Förderprojekt des Bundesministeriums für Digitales und Verkehr, 2023-24, zusammen mit der Stadt Dormagen)

Aufgabe: Automatisierte Erkennung/Bewertung von

Fahrbahnzuständen

Partner: Kreis RE, Kreisstädte RE, GE, BOT und

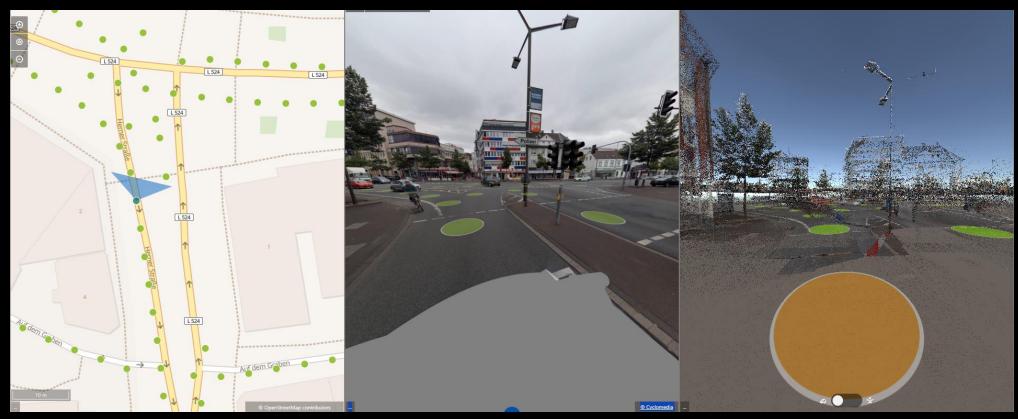
Bocholt

Anwendung: Kostengünstige Schadenerfassung/Planung

Datenbasis: Digitaler Zwilling (Cyclomedia), E-EMI,

AP9 Regelwerk zur Bewertung von

Innerortsstraßen


Laufzeit: 12 Monate

Umsetzung:

- 1. Vorverarbeitung: Umrechnung der Bild- und Laserdaten in 4-Kanal-Orthofotos,
- 2. Labeling der Daten
- 3. Trainieren eines CNN (U-Net) zur Segmentierung
- 4. Algorithmische Lösung zur simulierten Messung der Straßenebenheit
- 5. Nachbearbeitung: Vektorisierung und Aggregation

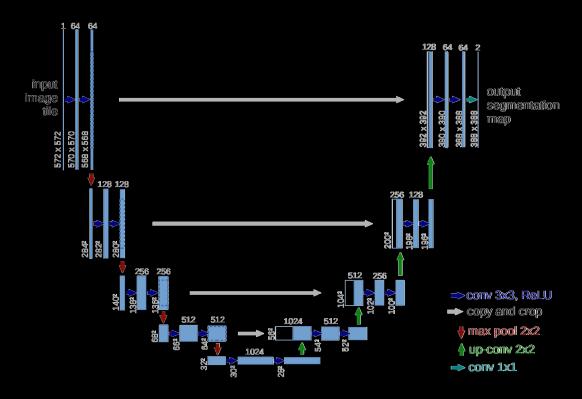
Quelle: Street Smart, Cyclomedia

Beispiele Schadensmerkmale Substanz

Risse Flickstellen

Schlaglöcher

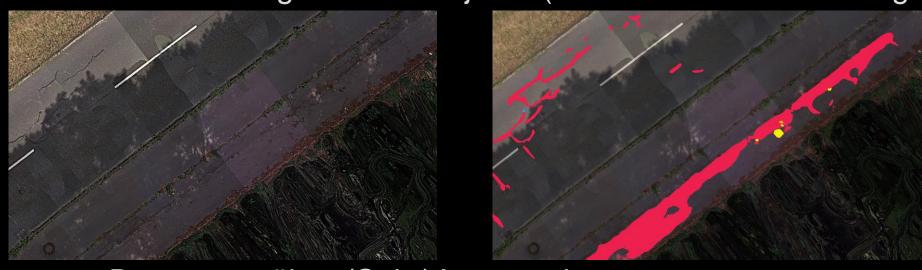
Beispiele Schadensmerkmale Substanz


Offene Fugen

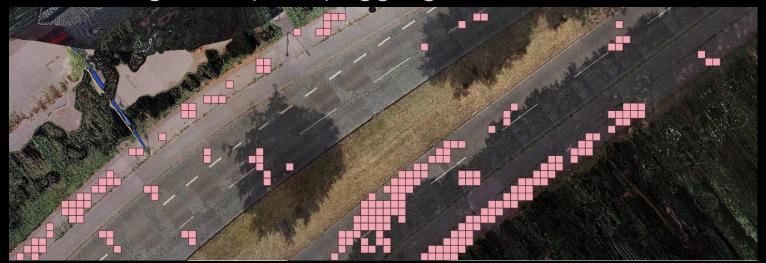
Abplatzungen

Störungen Verband, Gefügeauflösungen

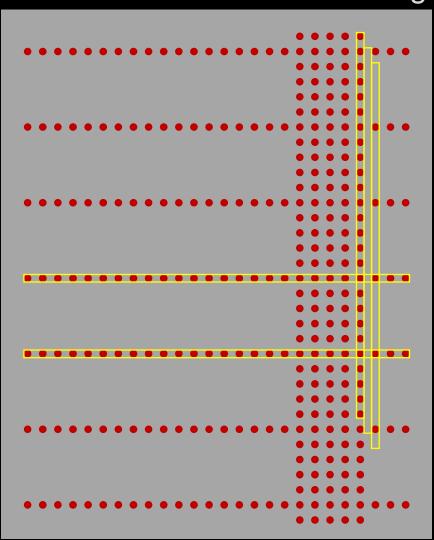
Das ML-Modell: U-Net



IFig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.


Quelle: Ronneberger et al. in U-Net: Convolutional Networks for Biomedical Image Segmentation

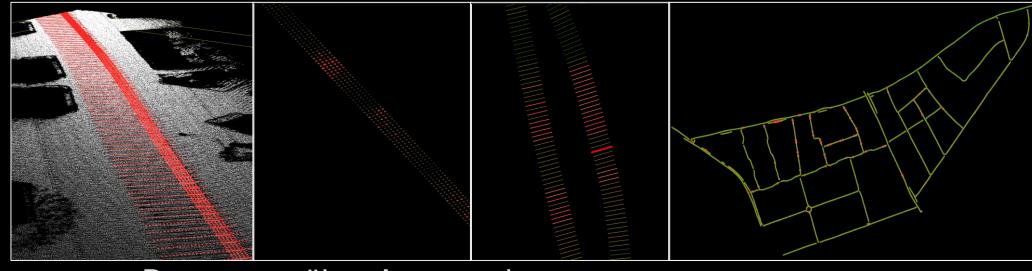
Substanz: Erkennung Schadenobjekte (Risse/Flickstellen/sonstige)



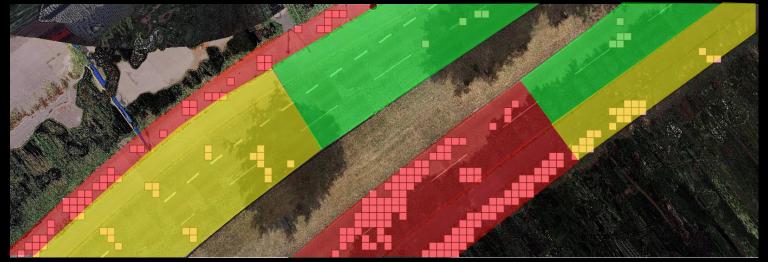
Bewertung über (Sub-)Aggregation

Ebenheit: Simulationsmessung anhand von 3D-Punktwolken

Längsebenheit:

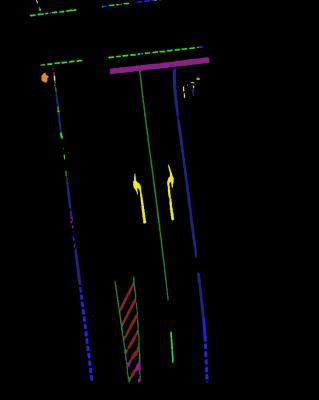

Stichmaß Mitte gleitender 4m-Latte Max, Mittelwert, Stabw zum gleitenden MW

Querebenheit:


Spurrinnentiefe, fiktive Wassertiefe

Ebenheit: Simulationsmessung anhand von 3D-Punktwolken

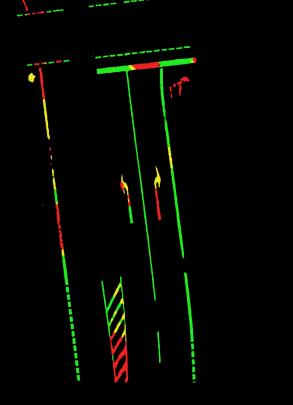
Bewertung über Aggregationen



Erkennung Fahrbahnmarkierungen

Typen:

- durchgezogen dünn
- gestrichelt dünn
- durchgezogen dick
- gestrichelt dick
- Haltebalken
- Pfeil
- Insel
- ...



Erkennung Fahrbahnmarkierungen

Zustand:

- gut
- mittel
- schlecht

In Planung:

- Aufbau eines Anwendungszentrums "Künstliche Intelligenz für kommunale Lösungen"
 - als Institut an der WH
 - Zusammen mit DFKI, Fraunhofer IAIS/FOKUS und Prosoz GmbH
 - Deutschlandweites Engagement für innovative und intelligente Anwendungen

- Weitere Projekte in der Forschungsgruppe
 - Niederschwelliges Mobile Mapping für Kommunen (aktuelles BMDV-**Projekt)**
 - Aufbau einer Auto-ML Plattform (beantragt)
 - KI-Unterstützung bei Planungsverfahren im Gewässerschutz (beantragt)
 - Unterstützung kommunales Klimamodell mit Versiegelungsdaten

Ende

Fragen?

Westfälische Hochschule

Gelsenkirchen Bocholt Recklinghausen University of Applied Sciences

Christian Kuhlmann Tel.: +49 209 9596 137

E-Mail: christian.kuhlmann@w-hs.de

• Aufgabe: Automatisierte Erkennung von Versiegelungsflächen

Partner: Kreis RE

Anwendung: Stadtplanung Klimaanpassung, Extremwetterereignisse,

Katasterverifikation

Datenbasis: Luftbildaufnahmen GeoBasis NRW

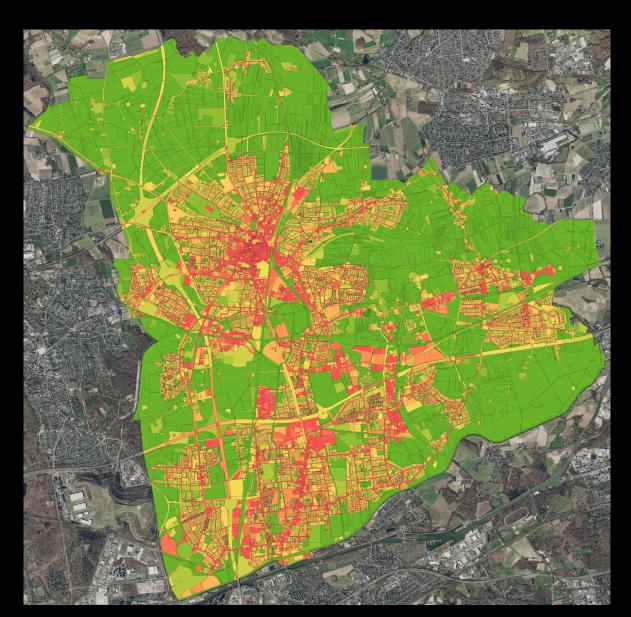
(TrueDOP10 RGB/NIR), Ground-Truth-Daten aus

Kartierungen der EGLV

Lösung:

 Umrechnung und Zusammenführung der Luftbildaufnahmen 4-Kanal-Bilder (RGB und NIR)

- 2. Aufbereitung und Ergänzung der EGLV-Kartierungen als Trainingsdaten.
- 3. Anpassung und Training eines Neuronalen Netzes zur Segmentierung (U-Net-CNN)
- 4. Vektorisierung und Aggregation
- Laufzeit: 01/2022 12/2022



Anwender/Interessenten von ADOIS

Kreis Recklinghausen
Stadt Recklinghausen
Stadt Dorsten
Stadt Herten
Stadt Dortmund
Ruhr-Universität-Bochum
EGLV, Essen
Regionalverband Ruhr, Essen
Wirtschaftsbetrieb Hagen AöR

Wirtschaftsbetrieb Hagen AöR PFI GmbH & Co. KG, Bochum Fischer Teamplan, Düsseldorf HPC AG, Jülich

Stadt Mönchengladbach Stadt Leverkusen Stadtentwässerungsbetriebe Köln

DILLIG Ingenieure GmbH, Simmern Hochschule für TuW, Saarbrücken

Hartwig GmbH (Ingenieurbüro), Wiesbaden

Jade Hochschule, Wilhelmshaven
Universität Rostock, Kooperation mit dem
Landesamt für Geoinformation und
Landesvermessung Niedersachsen

Bündnis 90 / Die Grünen, Brandenburg Luftbild Umwelt Planung GmbH, Potsdam Wasserverband Strausberg-Erkner,

Deutsche Umwelthilfe e.V., Hannover

Strausberg

Klinger und Partner Ingenieurbüro, Stuttgart Henning Larsen, Architekturbüro, Stuttgart